
Annamalai University
Department of Computer Science and Engineering

B.E(CSE) VI SEMESTER

1608PC602 PYTHON PROGRAMMING

LECTURE NOTES

(UNITS IV & V)

Course Teacher:

Dr. A. GEETHA,

Professor.

UNIT V - DATABASE AND GUI

DBM DATABASES:

A database API is provided by Python that is very useful when needed to work with
different type of databases. The data are stored within a DBM (database manager) persistent
dictionaries that work like normal Python dictionaries except that the data is written to and read
from disk. There are many DBM modules and the most common is the anydbm module.

The DBM modules work when the data needs to be stored as key/value pairs and can be
used when :

 data needs are simple
 small amount of data
 use a relational database if support for transactions is required

Example: To store data into a DB using dictionary-like syntax.:

dbm :

dbm is a generic interface to variants of the DBM database dbm.gnu or dbm.ndbm.

Some of the functions are:

exception dbm.error
A tuple containing the exceptions that can be raised by each of the supported modules,
with a unique exception also named dbm.error as the first item the latter is used
when dbm.error is raised.

dbm.whichdb(filename)
This function attempts to guess which of the several simple database modules available

 dbm.gnu, dbm.ndbm or dbm.dumb should be used to open a given file.

dbm.open(file, flag='r', mode=0o666)

Open the database file file and return a corresponding object. If the database file already
exists, the whichdb() function is used to determine its type and the appropriate module
is used; if it does not exist, the first module listed above that can be imported is used.

Example : To records some hostnames and a corresponding title, and then print out the
contents of the database:

SQL DATABASES

Python is used to connect the front-end of an application with the back-end database. SQLite

below:

1. To use SQLite, we must import sqlite3.
2. Then create a connection using connect() method and pass the name of the database you

want to access if there is a file with that name, it will open that file. Otherwise, Python
will create a file with the given name.

3. After this, a cursor object is called to be capable to send commands to the SQL. Cursor
is a control structure used to traverse and fetch the records of the database. Cursor has a
major role in working with Python. All the commands will be executed using cursor
object only.

4. To create a table in the database, create an object and write the SQL command in it with
being commented. Example:-

5. And executing the command is very easy. Call the cursor method execute and pass the
name of the sql command as a parameter in it. Save a number of commands as the
sql_comm and execute them. After you perform all your activities, save the changes in
the file by committing those changes and then lose the connection.

Example : To create table and show insertions into the table

Example : To fetch data from the table.

Example : To update records and display

Example : To delete records and display the remaining records.

GUI PROGRAMMING USING PYTHON
GUI GRAPHICAL USER INTERFACE :

GUI is a desktop application which helps us to interact with the computers. They are used to
perform different tasks in the desktops, laptops and other electronic devices. Some of the GUI
apps are:

 Text-Editors to create, read, update and delete different types of files.
 Sudoku, Chess and Solitaire to play are games.
 Google Chrome, Firefox and Microsoft Edge to browse through the Internet.

Python Libraries :

GUI can be created using the following libraries in Python:

 Kivy
 Python QT
 wxPython
 Tkinter

Tkinter:

Tkinter is actually an inbuilt Python module used to create simple GUI apps. It is the most
commonly used module for GUI apps in the Python.

The following diagram shows how an application actually executes in Tkinter:

An event loop is basically telling the code to keep displaying the window until we manually
close it. It runs in an infinite loop in the back-end.

1
2
3
4
5
6
7
8
9

10
11

import tkinter

window = tkinter.Tk()

to rename the title of the window window.title("GUI")

pack is used to show the object in the window

label = tkinter.Label(window, text = "Hello World!").pack()

window.mainloop()

Tkinter package is imported and window is defined. Also a window title GUI is shown on the
title tab whenever you open an application. A label is output needs to be shown on the window.
In this case it is hello world.

PROCESSING EVENTS:

Tkinter GUI programming is event driven. After the user interface is displayed, the program
waits for user interactions such as mouse clicks and key presses. This is specified in the
following statement:

 window.mainloop()

The statement creates an event loop. The event loop processes events continuously until you
close the main window. A Tkinter widget can be bound to a function, which is called when an
event occurs. When the user clicks a button, your program should process this event. You
enable this action by defining a processing function and binding the function to the button, as
shown below:

1 # Import all definitions from tkinter
2
3 def processOK():
4 print("OK button is clicked")
5
6def processCancel():
7 print("Cancel button is clicked")
8
9 window = Tk() # Create a window
10 btOK = Button(window, text = "OK", fg = "red", command = processOK)
11 btCancel = Button(window, text = "Cancel", bg = "yellow",
12 command = processCancel)
13 btOK.pack() # Place the OK button in the window
14 btCancel.pack() # Place the Cancel button in the window
15
16window.mainloop() # Create an event loop

Output:

Tkinter Widgets

The basic component of a Tk-based application is called a widget. A component is also
sometimes called a window, since, in Tk, "window" and "widget" are often used
interchangeably. Tk is a package that provides a rich set of graphical components for creating
graphical applications with Tcl.

Tk provides a range of widgets ranging from basic GUI widgets like buttons and menus to
data display widgets.

Tk applications follow a widget hierarchy where any number of widgets may be placed within
another widget, and those widgets within another widget. The main widget in a Tk program
is referred to as the root widget and can be created by making a new instance of the TkRoot
class.

Creating a Widget

The syntax for creating a widget is given below:

type variableName arguments options

where type here refers to the widget type like button, label, and so on

 arguments can be optional and required based on individual syntax of each widget.

 options range from size to formatting of each component.

WIDGET CLASSES:

Button A simple button, used to execute a command.

Canvas Structured graphics, used to draw graphs and plots, create graphics editors, and

implement custom widgets.

Checkbutton Clicking a check button toggles between the values.

Entry A text entry field, also called a text field or a text box.

Frame A container widget for containing other widgets.

Label Displays text or an image.

Menu A menu pane, used to implement pull-down and popup menus.

Menubutton A menu button, used to implement pull-down menus.

Message Displays a text. Similar to the label widget, but can automatically wrap text to a

given width or aspect ratio.

Radiobutton Clicking a radio button sets the variable to that value, and clears all other radio

buttons associated with the same

variable.

Text Formatted text display allows to display and edit text with various styles and attributes.

Also supports embedded images and windows.

Label Widget

A Label widget shows text to the user

import Tkinter

parent_widget = Tkinter.Tk()

label_widget = Tkinter.Label(parent_widget, text="A Label")

label_widget.pack()

Tkinter.mainloop()

Button Widget

A Button can be on and off. When a user clicks it, the button emits an event. Images can be

displayed on buttons.

import Tkinter

parent_widget = Tkinter.Tk()

button_widget = Tkinter.Button(parent_widget,

 text="A Button")

button_widget.pack()

Tkinter.mainloop()

Entry Widget

An Entry widget gets text input from the user.

import Tkinter

parent_widget = Tkinter.Tk()

entry_widget = Tkinter.Entry(parent_widget)

entry_widget.insert(0, "Type your text here")

entry_widget.pack()

Tkinter.mainloop()

Radiobutton Widget

A Radiobutton lets to put buttons together, so that only one of them can be clicked. If one

button is on and the user clicks another, the first is set to off.

import Tkinter

parent_widget = Tkinter.Tk()

v = Tkinter.IntVar()

v.set(1) # need to use v.set and v.get to

set and get the value of this variable

radiobutton_widget1 = Tkinter.Radiobutton(parent_widget,

 text="Radiobutton 1",

 variable=v, value=1)

radiobutton_widget2 = Tkinter.Radiobutton(parent_widget,

 text="Radiobutton 2",

 variable=v, value=2)

radiobutton_widget1.pack()

radiobutton_widget2.pack()

Tkinter.mainloop()

Checkbutton Widget

A Checkbutton records on/off or true/false status. Like a Radiobutton, a Checkbutton widget

can be displayed without its check mark, and Tkinter variable is used to access its state.

import Tkinter

parent_widget = Tkinter.Tk()

checkbutton_widget = Tkinter.Checkbutton(parent_widget,

 text="Checkbutton")

checkbutton_widget.select()

checkbutton_widget.pack()

Tkinter.mainloop()

Listbox Widget

Listbox lets the user choose from one set of options or displays a list of items.

import Tkinter

parent_widget = Tkinter.Tk()

listbox_entries = ["Entry 1", "Entry 2",

 "Entry 3", "Entry 4"]

listbox_widget = Tkinter.Listbox(parent_widget)

for entry in listbox_entries:

 listbox_widget.insert(Tkinter.END, entry)

listbox_widget.pack()

Tkinter.mainloop()

Menu Widget

The Menu widget can create a menu bar

import Tkinter

parent_widget = Tkinter.Tk()

def menu_callback():

 print("I'm in the menu callback!")

def submenu_callback():

 print("I'm in the submenu callback!")

menu_widget = Tkinter.Menu(parent_widget)

submenu_widget = Tkinter.Menu(menu_widget, tearoff=False)

submenu_widget.add_command(label="Submenu Item1",

 command=submenu_callback)

submenu_widget.add_command(label="Submenu Item2",

 command=submenu_callback)

menu_widget.add_cascade(label="Item1", menu=submenu_widget)

menu_widget.add_command(label="Item2",

 command=menu_callback)

menu_widget.add_command(label="Item3",

 command=menu_callback)

parent_widget.config(menu=menu_widget)

Tkinter.mainloop()

Canvas Widget

Canvas widget is used to to draw on. It supports different drawing methods.

import Tkinter

parent_widget = Tkinter.Tk()

canvas_widget = Tkinter.Canvas(parent_widget

 bg="blue",

 width=100,

 height= 50)

canvas_widget.pack()

Tkinter.mainloop()

CANVAS WIDGET:

The Canvas is a rectangular area intended for drawing pictures or other complex
layouts. Graphics, text, widgets or frames can be placed on a Canvas.

The syntax is given as:

w = Canvas (master, option=value, ...)

where the parameters

 master

 options y used options for this widget. These options
can be used as key-value pairs separated by commas.

Example:

Result:

Example: To paint into a canvas using a small oval

Result:

GEOMETRY MANAGERS:
Tkinter uses a geometry manager to place widgets inside a container. Tkinter supports

three geometry managers such as the grid manager, the pack manager, and the place manager

as explained below.

1. pack() method:It organizes the widgets in blocks before placing in the parent widget.

2. grid() method:It organizes the widgets in grid (table-like structure) before placing in the

parent widget.

3. place() method:It organizes the widgets by placing them on specific positions directed

by the programmer.

Grid Manager:

The Grid geometry manager puts the widgets in a 2-dimensional table. The master widget is

e resulting table can hold a

widget. The grid manager is the most flexible of the geometry managers in Tkinter.

Example : To create the following layout using grid manager

Program:

Output:

Pack Manager:

The Pack geometry manager packs widgets in rows or columns. The options like fill, expand,
and side can be used to control pack manager. It is created as follows:

 Put a widget inside a frame (or any other container widget), and have it fill the entire
frame

 Place a number of widgets on top of each other

 Place a number of widgets side by side

Example : Putting a widget inside frame and filling entire frame
using expand and fill options and placing widgets on top of each other.

Output:

Place Manager:

 The Place geometry manager is the simplest of the three general geometry managers

provided in Tkinter. It allows to explicitly set the position and size of a window, either in

absolute terms, or relative to another window.

Example:

Output:

DISPLAYING IMAGES:

An image can be added to a label, button, check button, or radio button. To create an image,
the PhotoImage class as follows can be used.

photo = PhotoImage(file = imagefilename)

The image file must be in GIF format. You can use a conversion utility to convert image files
in other formats into GIF format.

Example: To show both image and text on Button.

Output:

Example: To add images and text to a label

MENUS:

Tkinter is used to create menus, popup menus, and toolbars. Tkinter provides a

comprehensive solution for building graphical user interfaces. Menus make selection easier

and are widely used in windows. Menu class is used to create a menu bar and a menu, and

add_command method to add items to the menu.

Example : To create menu using Menu class and add command method.

Output:

POPUP MENUS:
A popup menu, also known as a context menu, is like a regular menu, but it does not

have a menu bar and it can float anywhere on the screen. Creating a popup menu is similar to

creating a regular menu. First, an instance of Menu is created , and then items are added to it.

Finally, widget is bound with an event to pop up the menu.

Example : To create a popup menu

Output:

 A popup menu appears on right click.

MOUSE, KEY EVENTS, AND BINDINGS:

The bind method is used to bind mouse and key events to a widget. The event is a

standard Tkinter object, which is automatically created when an event occurs. Every handler

has an event as its argument. The following example defines the handler using the event as the

argument:

menu.post(event.x_root, event.y_root)

The event object has a number of properties describing the event pertaining to the event. For

example, for a mouse event, the event object uses the x, y properties to capture the current

mouse location in pixels.

 The events and their properties are listed below:

<ButtonReleased-i> An event occurs when a mouse button is released.

<Double-Button-i> An event occurs when a mouse button is double-clicked.

<Enter> An event occurs when a mouse pointer enters the widget.

<Key> An event occurs when a key is pressed.

<Leave> An event occurs when a mouse pointer leaves the widget.

<Return> An event occurs when the Enter key is pressed. You can bind any key such as A,

 B, Up, Down, Left, Right

in the keyboard with an event.

<Shift+A> An event occurs when the Shift+A keys are pressed. You can combine Alt, Shift,

and Control with other keys.

<Triple-Button-i> An event occurs when a mouse button is triple-clicked.

Binding function is used to deal with the events. We can bind functions and
methods to an event as well as we can bind these functions to any particular widget.

Example: Binding mouse movement with tkinter Frame.

Output:

 ANIMATIONS:
Animations can be created by displaying a sequence of drawings. The Canvas class

can be used to develop animations. Graphics and text can be displayed on the canvas using

the move(tags, dx, dy) method to move the graphic with the specified tags.

Example: To create an animation

Output:

The animation is done essentially in the following three statements in a loop (lines 19 21):

canvas.move("text", dx, 0) # Move text dx unit
 canvas.after(100) # Sleep for 100 milliseconds
 canvas.update() # Update canvas

SCROLLBARS:
A Scrollbar widget can be used to scroll the contents in a Text, Canvas, or Listbox widget
vertically or horizontally.

Output:

STANDARD DIALOG BOXES:

Standard dialog boxes can be used to display message boxes or to prompt the user to enter
numbers and strings.

Message Dialogues:

The message dialogues are provided by the 'messagebox' submodule of tkinter. 'messagebox'
consists of the following functions, which correspond to dialog windows:

 askokcancel(title=None, message=None, **options)
Ask if operation should proceed; return true if the answer is ok

 askquestion(title=None, message=None, **options)
Ask a question

 askretrycancel(title=None, message=None, **options)
Ask if operation should be retried; return true if the answer is yes

 askyesno(title=None, message=None, **options)
Ask a question; return true if the answer is yes

 askyesnocancel(title=None, message=None, **options)
Ask a question; return true if the answer is yes, None if cancelled.

 showerror(title=None, message=None, **options)
Show an error message

 showinfo(title=None, message=None, **options)
Show an info message

 showwarning(title=None, message=None, **options)
Show a warning message

Open File Dialogue:

Output:

The above code creates a window with a single button with the text "File Open". If
the button is pushed, the following window appears:

Colour Dialogue:

Output:

LIST BOXES:

A Listbox widget is used to display a list of items from which a user can select a number of

items.

The syntax for a listbox creation is :

listbox = Listbox(root, bg, fg, bd, height, width, font, ..)

where optional parameters are:

 root root window.
 bg background colour
 fg foreground colour
 bd border
 height height of the widget.
 width width of the widget.
 font Font type of the text.
 highlightcolor The colour of the list items when focused.
 yscrollcommand for scrolling vertically.
 xscrollcommand for scrolling horizontally.
 cursor The cursor on the widget which can be an arrow, a dot etc.

Common methods are:

 yview allows the widget to be vertically scrollable.
 xview allows the widget to be horizontally scrollable.
 get() to get the list items in a given range.
 activate(index) to select the lines with a specified index.
 size() return the number of lines present.
 delete(start, last) delete lines in the specified range.
 nearest(y) returns the index of the nearest line.

Example 1: To create a Listbox

from Tkinter import *
import tkMessageBox
import Tkinter

top = Tk()

Lb1 = Listbox(top)
Lb1.insert(1, "Python")
Lb1.insert(2, "Perl")
Lb1.insert(3, "C")
Lb1.insert(4, "PHP")
Lb1.insert(5, "JSP")
Lb1.insert(6, "Ruby")

Lb1.pack()
top.mainloop()

Output:

Example 2: To create a listbox

from tkinter import *

create a root window.
top = Tk()

create listbox object
listbox = Listbox(top, height = 10,
 width = 15,
 bg = "grey",
 activestyle = 'dotbox',
 font = "Helvetica",
 fg = "yellow")

Define the size of the window.
top.geometry("300x250")

Define a label for the list.
label = Label(top, text = " FOOD ITEMS")

insert elements by their
index and names.
listbox.insert(1, "Nachos")
listbox.insert(2, "Sandwich")

listbox.insert(3, "Burger")
listbox.insert(4, "Pizza")
listbox.insert(5, "Burrito")
 # pack the widgets
label.pack()
listbox.pack()
#Display untill User
exits themselves.
top.mainloop()

Output:

